One-dimensional mathematical and numerical modeling of liquid dynamics in a horizontal capillary
نویسندگان
چکیده
This paper is concerned with a mathematical and numerical study of liquid dynamics in a horizontal capillary. We derive a two-liquids model for the prediction of capillary dynamics. This model takes into account the effects of real phenomena: like the outside flow action, or the entrapped gas inside a closed-end capillary. Moreover, the limitations of the one-dimensional model are clearly indicated. Finally, we report on several tests of interest: an academic test case that can be used to check available numerical methods, a test for decreasing values of the capillary radius, a simulation concerning a closed-end capillary, and two test cases for two liquids flow. In order to study the introduced mathematical model, our main tool, is a reliable one-step adaptive numerical approach based on a one-step one-method strategy.
منابع مشابه
Entrapped Gas Action for One-Dimensional Models of Capillary Dynamics
This paper is concerned with a mathematical and numerical study of the effect of gas entrapment on liquid dynamics in a closed-end horizontal capillary. This problem is important in order to understand how the presence of a gas inside the capillary can influence the dynamics of capillary flows and the non destructive test procedures carried out through liquid penetrant testing. In this context,...
متن کاملAn Analytical Solution for One-dimensional Horizontal Imbibition in a Cocurrent Flow
Cocurrent spontaneous imbibition (COCSI) of an aqueous phase into matrix blocks arising from capillary forces is an important mechanism for petroleum recovery from fractured petroleum reservoirs. In this work, the modeling of countercurrent imbibition is used to develop the appropriate scaling equations. Considering the imbibition process and the water and oil movement respectively as the wet p...
متن کاملNumerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....
متن کاملNumerical Computation Of Multi-Component Two-Phase Flow in Cathode Of PEM Fuel Cells
A two-dimensional, unsteady, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) is studied numerically in the present study. The mixture is composed of oxygen, nitrogen, liquid water and water vapor. The governing equations are two species conservation, a single momentum equation for mobile mixture, liquid mass cons...
متن کاملModeling and investigating the effect of ultrasound waves pressure on the microbubble oscillation dynamics in microvessels containing an incompressible fluid (Research Article)
Understanding the dynamics of microbubble oscillation in an elastic microvessel is important for the safe and effective applications of ultrasound contrast agents in imaging and therapy. Numerical simulations based on 2D finite element model are performed to investigate the effect of acoustic parameters such as pressure and frequency on the dynamic interaction of the fluid-blood-vessel system. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Meth. in Science and Engineering
دوره 9 شماره
صفحات -
تاریخ انتشار 2009